Sistema de georradar con dron diseñado para una recolección precisa de datos subterráneos.
$ 0
El Radar de Penetración Terrestre (GPR, por sus siglas en inglés) utiliza pulsos de radar para detectar e imaginar objetos y características subterráneas.
Un transmisor de GPR emite energía electromagnética en el suelo.
Cuando la energía encuentra un objeto enterrado o un límite entre materiales con diferentes permitividades dieléctricas (una propiedad que define la velocidad de las ondas electromagnéticas), puede reflejarse hacia la antena receptora del GPR. La electrónica del GPR puede entonces registrar las variaciones en la señal de retorno.
Los datos del GPR provienen del sensor en forma digital y no están destinados a la interpretación directa por humanos, a diferencia de las fotos de las cámaras. Requieren software especializado para su procesamiento e interpretación.
Estos métodos de representación de datos de GPR son los más populares, pero existen muchas opciones adicionales, incluyendo la exportación a formatos que pueden ser importados en sistemas CAD y GIS.
Fig.2 – Perfil de GPR cruzando un gasoducto con interpretación. Los datos fueron recolectados utilizando el sistema GPR Zond Aero 500, procesados e interpretados en el software Prism2 de Radar Systems.
Fig.3 – Sección horizontal del subsuelo para visualizar el recorrido de las instalaciones. Los datos fueron recolectados utilizando el sistema GPR Zond Aero 500 y procesados en Geolitix.
Fig.4 – Representación en 3D de las mismas instalaciones que en la imagen con secciones horizontales. Captura de pantalla de Geolitix.
Fig.5 – Rejilla de espesor de hielo. Los datos fueron recolectados utilizando el sistema GPR Zond Aero 1000 y procesados en Geolitix.
El diseño de la antena refleja:
Penetración más profunda posible: hasta unas pocas docenas de metros en suelos de muy baja conductividad (arena seca o rocas), o cientos de metros en hielo, lo que hace que este sistema sea una herramienta excelente para la glaciología y el escaneo profundo.
El Zond Aero LF en drones como el DJI M350/M300 RTK puede usarse con antenas en el rango de frecuencia de 75…400 MHz, lo que permite seleccionar la frecuencia adecuada para una aplicación particular. Cambiar la antena toma un par de minutos.
Un sistema bastante universal con una antena blindada, capaz de penetrar lo suficientemente profundo para muchas aplicaciones de geofísica de ingeniería y detectar objetos relativamente pequeños o servicios públicos delgados.
La mejor resolución posible y la capacidad de detectar objetivos pequeños, pero la penetración bajo la superficie en condiciones normales será inferior a 0.5 m.
La tabla proporciona un resumen de lo que podemos esperar de los sistemas GPR disponibles para uso en drones y sus aplicaciones recomendadas. Aquí, hemos listado los sistemas GPR fabricados por Radar Systems Inc., Letonia, ya que esta línea de GPR cubre todas las posibles aplicaciones para radares de penetración terrestre montados en drones. Cualquier otro sistema GPR con una frecuencia central similar tendrá más o menos los mismos parámetros prácticos en cuanto a penetración y resolución.
Tenga en cuenta que la penetración y la resolución en ciertos lugares dependen de la composición del suelo, la humedad, la temperatura, etc. En la tabla a continuación, utilizamos los parámetros de un “suelo promedio” típico: una sustancia con una permitividad dieléctrica relativa de 9, baja conductividad y bajo contenido de agua.
A pedido, los sistemas GPR Zond Aero LF pueden venir con antenas para frecuencias centrales personalizadas.
Dado que, en el caso del uso aéreo (cuando la antena GPR no está en contacto con la superficie), una parte significativa de la energía del impulso GPR puede reflejarse en la superficie, se espera que la penetración desde un dron sea la mitad de la lograda con una encuesta terrestre en la superficie. La altitud recomendada (o la distancia entre la antena y la superficie) en el caso de una encuesta aérea debe ser menor que la longitud de la onda electromagnética en el aire correspondiente a la frecuencia central de la antena.
La penetración en buenas condiciones, como arena muy seca en el desierto después de la temporada seca, puede ser hasta 2 veces mejor. En condiciones ideales (nieve y hielo), la penetración puede ser de 3 a 4 veces mejor. Condiciones como la arena seca o la nieve/hielo también son muy buenas para el uso aéreo. Si se mantiene la altitud recomendada, no vemos ninguna degradación significativa de la máxima penetración en hielo o nieve en comparación con el uso terrestre.
El tamaño mínimo de un objeto detectable es el diámetro de la superficie plana superior de un objeto subterráneo orientado horizontalmente. A veces (dependiendo de la dirección de viaje del GPR), es imposible detectar una hoja de metal incluso si tiene el doble del tamaño mínimo requerido si, por ejemplo, está posicionada en un ángulo de 45 grados.
“Size mínimo” o “diámetro mínimo” significa que es extremadamente poco probable detectar objetos más pequeños. Pero no se garantiza que será posible detectar objetos más grandes; eso dependerá de docenas de otros factores.
El diámetro del reflector plano detectable se estima utilizando una “regla general” como el 10% de la distancia entre la antena y el objeto (elevación de la antena + profundidad) O la mitad de la longitud de onda en el material anfitrión, el que sea mayor.
El diámetro mínimo de tubos plásticos vacíos detectables se estima como la longitud de onda de la frecuencia central del GPR en el aire dividida por 2.
El diámetro mínimo de objetos conductores detectables (tuberías metálicas, tuberías de plástico llenas de agua) se estima en un 40% de la longitud de onda de la frecuencia central del GPR en un material anfitrión (fuente: Ground‐Penetrating Radar for Geoarchaeology, Lawrence B. Conyers).
NUNCA planifiques encuestas utilizando estimaciones cercanas a los límites de penetración, tamaño de objetos detectables, etc. Siempre utiliza valores más conservadores.
Un error típico de los nuevos usuarios de GPR es pedir un sistema de GPR con máxima penetración y tratar de detectar objetos subterráneos más pequeños con él. Recuerda: una buena máxima penetración significa una mala resolución/capacidad para detectar objetos pequeños.
Al pedir un nuevo sistema de GPR para una aplicación particular, considera qué penetración es necesaria, es decir, no la excedas demasiado. Los clientes potenciales a menudo piden un sistema para búsqueda de servicios con una penetración máxima de hasta 20 m. Sin embargo, la profundidad habitual de tuberías/cables es de 1-2 m. Es mucho mejor pedir un sistema de 500 MHz, que permitirá la detección de objetos más pequeños/finos.
Una capa de arcilla, incluso con una pequeña cantidad de agua, arruinará la imagen adquirida. Si hay arcilla o suelo arcilloso en el área de la encuesta, esta debe planificarse después de una temporada seca o un largo período de tiempo seco.
Las ondas electromagnéticas no penetran a través del agua salada. Por lo tanto, el GPR no se puede utilizar para batimetría en mar/agua salada.
Los sistemas magnetométricos montados en drones no sólo incluyen el dron y la carga útil del magnetómetro. SPH Engineering suministra soluciones integrales para cada aplicación concreta. Drones compatibles: DJI M300/M350/M600, Inspired Flight IF1200A o IF800, Harris Aerial H6, y Wispr Ranger Pro y UAV similares
GPR integrado con montajes para el dron
Actúa como registrador de datos del magnetómetro e implementa el modo True Terrain Following
Altímetro láser o radar para volar automáticamente en modo de seguimiento del terreno
Software de control en tierra con funciones especializadas para levantamientos magnetométricos, esencial para una recogida de datos precisa
Programas informáticos de tratamiento de datos para el tratamiento inicial (limpieza y filtrado de datos) y la generación de resultados.
fcc_pack_units: 0
fcc_price_coef: 0
fcc_product_is_outlet: false
fcc_product_no_shipping:
fcc_product_outlet_id:
fcc_product_rent_day0: 0
fcc_product_rent_day1: 0
fcc_product_rent_month: 0
fcc_product_rent_week: 0
fcc_product_type: –
featured: 0